$20^{\text {th }}$ General National Chemistry Competition

for high school students

Thursday February 25, 2021
Time: 8-10 ($\mathbf{1 2 0} \mathbf{~ m i n}$)
$\infty \infty \infty$

University of Iceland

Tandur hf

$20^{\text {th }}$ General National Chemistry Competition

February 25, 2021
\qquad
Name:
Kennitala:
Phone number:
Email:
School:

General instructions

1. This booklet contains 21 questions on 16 numbered pages, as well as a cover page, a formula sheet and the periodic table. Make sure that you have all of the pages.
The first 10 questions give 3 points each, the next 8 give 5 points each and finally, the last 3 questions give 10 points each.
2. Your results and answers must be written on the exam papers (this booklet). Answers on scratch papers will not be graded.
3. There will be no point deduction for wrong answers.
4. The only support materials allowed are a non-programmable calculator and the next two pages, which include formulas, constants and the periodic table. You may tear the formula sheets from the booklet.
5. There is only one correct answer in each multiple choice questions.
6. Some of the questions are in several parts. If any part is answered incorrectly and the answer is used in subsequent parts, no points will be deducted for the later parts as long as the calculations are correct.

Some formulas and constants

$\Delta G=\Delta H-T \Delta S$
$k=A e^{-\frac{E_{a}}{R T}}$
$\Delta G^{\circ}=-R T \ln K=-n F E^{\circ}$
$p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$A=\epsilon b c$
$N_{A}=6,0223 \cdot 10^{23} \mathrm{mól}^{-1}$
$1 \mathrm{~atm}=760$ torr $=101325 \mathrm{~Pa}$
$h=6,626 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$A=A_{0} \cdot e^{-k t}$
$a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad I=\frac{Q}{t}$
$q=C \Delta T$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \quad \Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(\frac{k_{1}}{k_{2}}\right)=-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \quad E=E^{\circ}-\frac{R T}{n F} \ln Q$
$q=m c \Delta T$
$p K_{a}=-\log K_{a}$
$p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}$
$P V=n R T \quad E=\frac{h c}{\lambda}$
$F=96485 \frac{\mathrm{C}}{\text { mol } e^{-}}$
$T_{K}=T_{{ }^{\circ} \mathrm{C}}+273,15$
$K_{w}=1,00 \cdot 10^{-14} \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}=0,9869 \mathrm{~atm}$
$c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
$R=8,3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{mól}}=0,08206 \frac{\mathrm{~L} \cdot \mathrm{tatm}}{\mathrm{K} \cdot \mathrm{mól}}$
$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \quad 1$ kaloría $=4,184 \mathrm{~J}$
$\pi=i c R T$

Part I-3 point questions

Question 1

Which of the following is NOT a chemical mixture?

PetrolSea WaterIronAirSand

Question 2

Which element has the electron configuration $[\mathrm{Ar}] 4 s^{2} 3 d^{3}$?

Calcium (Ca)

Arsenic (As)
Niobium (Nb)Scandium (Sc)Vanadium (V)

Question 3

A chemist needs to measure 25.00 mL of a certain solution. Which apparatus should they use for the measurement?

Graduated cylinderBeaker
Erlenmeyer flaskSeparatory funnelPipette

Question 4

According to the VSEPR model, what is the molecular geometry of NH_{3} ?

SeesawTrigonal Pyramid
T-shapedOctahedralTrigonal Planar

Question 5

A phase diagram for substance \mathbf{Y} can be seen below. Which of the statements below is correct?

\square
At $0^{\circ} \mathrm{C}$ and 1200 torr, \mathbf{Y} is a solid.At point 1, $\mathbf{Y}(s)$ will convert to $\mathbf{Y}(g)$ and no $\mathbf{Y}(l)$ is present.At point 2, the phase equilibrium $\mathbf{Y}(l) \rightleftharpoons \mathbf{Y}(g)$ exists.At point 3, the phase equilibrium $\mathbf{Y}(l) \rightleftharpoons \mathbf{Y}(g)$ exists.At point 4, the phase equilibrium $\mathbf{Y}(l) \rightleftharpoons \mathbf{Y}(g)$ exists.

Question 6

What is the chemical formula for pent-3-en-1-yne?

$$
\begin{aligned}
\square & \mathrm{C}_{4} \mathrm{H}_{8} \\
\square & \mathrm{C}_{5} \mathrm{H}_{6} \\
\square & \mathrm{C}_{5} \mathrm{H}_{12} \\
\square & \mathrm{C}_{6} \mathrm{H}_{12} \\
\square & \mathrm{C}_{6} \mathrm{H}_{14}
\end{aligned}
$$

Question 7

The following chemical equilibrium is given:

$$
2 \mathrm{HF}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g)
$$

If 5 moles of $\mathrm{HF}(g)$ and 2 moles of $\mathrm{F}_{2}(g)$ are mixed in a 1.00 L container, which of the following statements is correct?
$\square \mathrm{HF}$ will form from H_{2} and F_{2} until the system reaches equilibrium.These amounts of moles in 1.00 L give equilibrium concentrations and therefore nothing happens.HF will react and form H_{2} and F_{2} until the system reaches equilibrum.There is not sufficient information given to be able to determine what happens in the reaction.All of the statements above are wrong.

Question 8

Aluminium reacts with chrome(II)oxide according to the following chemical equation:

$$
\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

10.8 g of aluminium is reacted with excess chrome(II)oxide. What is the maximum mass of chrome that could be formed by this reaction?
\square 30.4 g1.00 g0.400 g20.8 g10.8 g

Question 9

Arrange the following species in order of increasing size: $\mathrm{Ar}, \mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{S}^{2-}$.

$$
\begin{array}{ll}
\square & \mathrm{Ar}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-} \\
\square & \mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{Ar}<\mathrm{K}^{+} \\
\square & \mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Cl}^{-}<\mathrm{S}^{2-} \\
\square & \mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{Ar}<\mathrm{K}^{+} \\
\square & \mathrm{S}^{2-}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{Ar}
\end{array}
$$

Question 10

The figure below demonstrates a body-centered cubic (bcc) unit cell. How many ions are inside one such unit cell?

\square1
\square9

Part II - 5 point questions

Question 11

Electrolysis is used to apply chrome to an antique car's bumper. The bumper is placed in a solution that contains Cr^{3+} and the solution then electolyzed with 200 A current. How long does it take to apply 95 g of chrome onto the bumper?

5.0 min15 min

44 min56 min79 min

Question 12

25.00 g sample of industrial waste was analyzed in regards of chloride content. The sample was dissolved in water and the chlorine precipitated as silver chloride. The dried precipitate weighed 15.523 g . What was the mass percentage of chlorine in the initial sample?

$15.36 \%$$1.536 \%$

1.083\%3.840\%2.191\%

Question 13

12.2 g of $\mathrm{I}_{2}(s)$ is placed in a 15.0 L vacuum sealed vessel and heated until the temperature reached 100 ${ }^{\circ} \mathrm{C}$. At that temperature all the iodine has sublimated. What will the pressure be inside the vessel?

0.0981 torr19.9 torr74.5 torr137 torr
\square 373 torr

Question 14

A sample which contains only SrCO_{3} and BaCO_{3} weighs 0.800 g . When it is dissolved in excess acid, $0.211 \mathrm{~g} \mathrm{CO}_{2}$ is released. What mass-percentage of SrCO 3 did the sample contain? Assume all the carbon originally present is converted to CO_{2}.42.8\%
45.8\%

54.2\%

66.9\%
\square 71.3\%

Question 15

Balance the equation for the following redox reaction in an acidic medium:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}
$$

Balanced equation:

Question 16

a) A buffer solution is $0.30 \mathrm{M} \mathrm{NH}_{3}$ and $0.36 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}\left(p K_{a}=9.25\right)$. What is the pH of this solution?

$$
\mathrm{pH}=
$$

b) 20.0 mL of 0.050 M NaOH was then added to 80.0 mL of the buffer solution. What will the pH become after this addition?

$$
\mathrm{pH}=
$$

\qquad

Question 17

The element M is in the $2^{\text {nd }}$ group of the periodic table. A saturated solution of the insoluble salt MX_{2} has the osmotic pressure 0.0979 atm at $25^{\circ} \mathrm{C}$. What is the solubility product $\left(\mathrm{K}_{s p}\right)$ of MX_{2} ? (Assume that the salt splits completely into its ions).
\qquad

Question 18

Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is one of the main energy source for animals. The following unbalanced chemical reaction describes the burning of glucose in oxygen:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)
$$

The standard heats formation $\left(\Delta H_{f}^{o}\right)$ for some of the reactants and products can be seen in the table below:

Compound	$\Delta H_{f}^{o}[\mathrm{~kJ} / \mathrm{mol}]$
$\mathrm{CO}_{2}(g)$	-393.5
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$	-1273.3

a) What is the standard enthalpy for the reaction of glucose burning, $\Delta H_{\mathrm{rxn}}^{o}$?

$$
\Delta H_{r x n}^{o}=\ldots \frac{\mathrm{kJ}}{\mathrm{~mol}}
$$

b) What will be the enthalpy change when 5.00 g of glucose is burned?
\qquad kJ

Part III - 10 point questions

Question 19 Solubility product

Pórir the chemist has a solution which contains $8.88 \cdot 10^{-3} \mathrm{M} \mathrm{Pb}^{2+}$ and $1.46 \cdot 10^{-2} \mathrm{M} \mathrm{Zn}^{2+}$. He needs to seperate the lead and zinc in the solution and for that he plans to use the different solubilities of lead phosphate and zinc phosphate. The solubility product for these insoluble salts are as follows:

$$
\begin{aligned}
& K_{s p}\left[\mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]=3.0 \cdot 10^{-44} \\
& K_{s p}\left[\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]=9.1 \cdot 10^{-33}
\end{aligned}
$$

Pórir then proceeds to add $\mathrm{Na}_{3} \mathrm{PO}_{4}(s)$ slowly into the solution until he sees precipitation form in the solution.
a) Which insoluble salt will precipitate first? (Provide reasoning with calculations).
\qquad
b) What is the concentration of $\mathrm{PO}_{4}{ }^{3-}$ in the solution when the more insoluble compound starts to precipitate?

$$
\left[\mathrm{PO}_{4}{ }^{3-}\right]=
$$

\qquad M
c) What is the concentration of the more insoluble compound's cation when the more soluble compound starts to precipitate?
d) Seperation is deemed sufficient if it is possible to remove one of the ions in such a way that less then $1 / 1000$ of the original concentration remains in the solution. Is it possible to seperate lead and zinc in sufficient fashion in this case? Provide reasoning with calculations.

Question 20 Kinetics

The solvation of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in water can be described as follows:

$$
\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(s) \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(a q)
$$

In this question, spectroscopic measurements will be used to determine the rate of solvation of aspirin.
a) 1.00 mL of an aspirin solution with an unknown concentration was diluted to 100.0 mL and the absorption measured at 274 nm in a 1.00 cm cuvette. The absorption was measured as $A=0.3031$. What was the molarity of aspirin in the original solution? The molar absorptivity of aspirin at 274 nm is $1100 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~cm}}$.

$$
c_{\text {aspirin }}=
$$

\qquad
b) Now an aspirin tablet was put into 1 L of deionized water and allowed to dissolve under constant stirring. Every five minutes a sample of the solution was measured and the concentration determined with a spectroscopic measurement. The results from these tests can be seen in the table below:

Time (min)	Concentration (mM)
5	0.0835
10	0.170
15	0.249
20	0.334

What is the order of the solvation according to these measurements? (Provide reasoning)

The order of the solvation is \qquad
c) What is the rate constant of the solvation?

$$
k=\ldots \quad \frac{\mathrm{mM}}{\mathrm{~min}}
$$

d) The solvation of aspirin is faster at higher temperatures. The rate constants at different temperatures can be seen in the table below:

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k(\mathrm{mM} / \mathrm{min})$
40	$2.22 \cdot 10^{-2}$
50	$4.44 \cdot 10^{-2}$
60	$8.67 \cdot 10^{-2}$

What is the activation energy of the solvation?

$$
E_{a}=\ldots \frac{\mathrm{kJ}}{\mathrm{~mol}}
$$

Question 21 Organic Chemistry

Ozonolysis is an organic reaction in which ozone is used to cleave carbon - carbon double bonds and form two carbonyl groups instead. Ozone is a strong oxidant and this type of a reaction is called oxidative cleavage since it cleaves the double bond oxidatively. Most often the oxidative cleavage is followed by a reductive workup with reducing agents such as zinc (Zn) and dimethyl sulfide $\left(\mathrm{Me}_{2} \mathrm{~S}\right)$.

A general reaction scheme for an ozonolysis is shown below.

In this scheme, R can be an alkyl group, an aryl group or a hydrogen atom.

An example of this is the formation of ethanal and butanone from 3-methylpent-2-ene:

As can be seen above, the groups bound to the double bond remain unchanged.
a) Draw the structure of product \mathbf{A} in the reaction here below.

$\xrightarrow[\text { 2) } \mathrm{Me}_{2} \mathrm{~S}]{\text { 1) } \mathrm{O}_{3}} \mathrm{~A}$
b) In the reaction shown below, a double bond has been cleaved to form cyclopentanone and 2methylcyclopentanone. Draw the structure of the starting material, compound \mathbf{B}, which was used in the reaction below.

c) What is the IUPAC name of the compound shown below. Write your answer on the line.

IUPAC name:
d) Draw circles around all the stereocenters (chiral centers) in the compound below.

