$21^{\text {th }}$ General National Chemistry Competition

for high school students

Thursday March 3, 2022
Time: 8-10 (120 min)

HÁSKÓLI ÍSLANDS

University of Iceland

$21^{\text {th }}$ General National Chemistry Competition
 March 3, 2022

\qquad
Name:

Phone number:
Email:

General instructions

1. This booklet contains 21 questions on 16 numbered pages, as well as a cover page, a formula sheet and the periodic table. Make sure that you have all of the pages.
The first 10 questions give 3 points each, the next 8 give 5 points each and finally, the last 3 questions give 10 points each.
2. Your results and answers must be written on the exam papers (this booklet). Answers on scratch papers will not be graded.
3. There will be no point deduction for wrong answers.
4. The only support materials allowed are a non-programmable calculator and the next two pages, which include formulas, constants and the periodic table. You may tear the formula sheets from the booklet.
5. There is only one correct answer in each multiple choice questions.
6. Some of the questions are in several parts. If any part is answered incorrectly and the answer is used in subsequent parts, no points will be deducted for the later parts as long as the calculations are correct.

Some formulas and constants

$\Delta G=\Delta H-T \Delta S$
$k=A e^{-\frac{E_{a}}{R T}}$
$\Delta G^{\circ}=-R T \ln K=-n F E^{\circ}$
$p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$A=\epsilon b c$
$N_{A}=6.0223 \cdot 10^{23} \mathrm{mól}^{-1}$
$1 \mathrm{~atm}=760$ torr $=101325 \mathrm{~Pa}$
$h=6.626 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$A=A_{0} \cdot e^{-k t}$
$a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad I=\frac{Q}{t}$
$q=C \Delta T$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \quad \Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln \left(\frac{k_{1}}{k_{2}}\right)=-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \quad E=E^{\circ}-\frac{R T}{n F} \ln Q$
$q=m c \Delta T$
$p K_{a}=-\log K_{a}$
$p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}$
$P V=n R T \quad E=\frac{h c}{\lambda}$
$F=96485 \frac{\mathrm{C}}{\text { mol } e^{-}}$
$T_{K}=T_{{ }^{\circ} \mathrm{C}}+273.15$
$K_{w}=1.00 \cdot 10^{-14} \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}=0.9869 \mathrm{~atm}$
$c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$
$R=8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{mól}}=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{mól}}$
$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \quad 1$ kaloría $=4.184 \mathrm{~J}$
$\pi=i c R T$

Part I-3 point questions

Question 1

Which of the following elements is a transition metal?NiMgAlPb
\square Na

Question 2

Identify the conjugate base of $\mathrm{HSO}_{4}{ }^{-}$.

$\mathrm{SO}_{4}{ }^{2-}$$\mathrm{H}_{2} \mathrm{O}$$\mathrm{H}_{2} \mathrm{SO}_{4}$$\mathrm{H}_{2} \mathrm{SO}_{3}$$\mathrm{OH}^{-}$

Question 3

What does ${ }^{57} \mathrm{Fe}^{3+}$ have many protons (p), neutrons (n) and electrons (e)?26p, 31n, 23e26p, 29n, 29e57p, 31n, 23e26p, 31n, 29e31p, 26n, 29e

Question 4

How many significant figures are there in the answer to the following calculations?

$$
\frac{2.531}{4.1}-\frac{0.380}{0.723}=
$$

Question 5

How many atoms are there in 1.00 ng of magnesium (Mg) ?

4.11×10^{-11} atoms2.48×10^{13} atoms6.83×10^{-35} atoms6.02×10^{14} atoms1.46×10^{34} atoms

Question 6

The following reaction is exothermic:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Which of the following statements about the reaction is true?Spontaneous at all temperaturesNon-spontaneous at all temperaturesSponaneous above certain temperatureSpontaneous below certain temperatureNothing can be said about its spontaneity

Question 7

For the reaction:

$$
\mathrm{NH}_{4} \mathrm{OCONH}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.9 \times 10^{-3} \text { at } 25^{\circ} \mathrm{C}
$$

In an experiment, $\mathrm{NH}_{4} \mathrm{OCONH}_{2}(\mathrm{~s})$ is placed in an evacuated container and allowed to come to equilibrium at $25^{\circ} \mathrm{C}$. What is the total pressure in the container at equilibrium?

0.27 atm$2.9 \times 10^{-3} \mathrm{~atm}$0.090 atm0.18 atm0.43 atm

Question 8

A gas sample in a 225 mL container at $30^{\circ} \mathrm{C}$ has a pressure of 625 torr. If the sample is transferred to a 400 mL container and heated to $40^{\circ} \mathrm{C}$, what will the pressure be?

363 torr869 torr1.15×10^{3} torr593 torr
\square 486 torr

Question 9

What is the molar volume of Ne gas under the conditions of temperature and pressure where its density is $0.429 \mathrm{~g} / \mathrm{L}$?

$47.0 \mathrm{~L} / \mathrm{mol}$

$8.66 \mathrm{~L} / \mathrm{mol}$

$2.13 \times 10^{-2} \mathrm{~L} / \mathrm{mol}$$24.5 \mathrm{~L} / \mathrm{mol}$$35.7 \mathrm{~L} / \mathrm{mol}$

Question 10

Water A, in a container made of glass, is placed in a pot full of water B, which is then heated on a stove. The glass does neither touch the bottom nor the sides of the pot. Which of the following statements is correct for water A?

\square
Water A will boil after water B.Water A will boil before water B.Water A and water B will boil simultaneously.Water A will never boil.Water A will boil as soon as the glass touches water B.

Part II - 5 point questions

Question 11

Gasoline with lead as an additive was banned due to the number of untimely deaths it caused. At a certain time the concentration of lead (Pb) in an air sample was $3.01 \mu \mathrm{~g} / \mathrm{m}^{3}$. How many atoms of lead would be precent in 0.500 L of this air sample (average breath volume of a grown-up person)?

4.37×10^{18} atoms4.37×10^{12} atoms8.74×10^{12} atoms6.52×10^{18} atoms
8.74×10^{21} atoms

Question 12

Electrolysis of an alkaline earth metal chloride, MCl_{2} using a current of 5.00 A for 748 s deposits 0.777 g of $\mathrm{M}(\mathrm{s})$ at the cathode. Identify the metal M .

BeMgCaSr
\square Ba

Question 13

The complete combustion of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ produces water and carbon dioxide. Calculate, using average bond energies (BE), how much energy is released when burning one mole of ethylene.

Bond	BE (kJ/mol)
$\mathrm{C}=\mathrm{C}$	614
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{O}=\mathrm{O}$	495
$\mathrm{O}-\mathrm{H}$	467
$\mathrm{C}=\mathrm{O}$	799

1313 kJ
1323 kJ
266 kJ
1345 kJ
2798 kJ

Question 14

Back-titration is a process where an analyte is reacted with an excess of reagent and the unreacted reagent is then (back-)titrated to an end point.

In this problem, back-titration is used to determine the mass percent of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in a 0.7170 g sample.

The sample was dissolved in water and 20.16 mL of $1.777 \times 10^{-3} \mathrm{M} \mathrm{AgNO}_{3}$ added to the solution. AgNO_{3} reacts with BaCl_{2} according to:

$$
\mathrm{BaCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}
$$

The unreacted AgNO_{3} was titrated with 7.56 mL of $1.704 \times 10^{-3} \mathrm{M} \mathrm{KSCN}$ solution:

$$
\mathrm{AgNO}_{3}+\mathrm{KSCN} \rightarrow \mathrm{AgSCN}(\mathrm{~s})+\mathrm{KNO}_{3}
$$

What was the mass percent of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the sample?
1.345\%$0.272 \%$$0.333 \%$$0.782 \%$$0.391 \%$

Question 15

Balance the following redox reaction (in acidic solution) with the lowest possible integer coefficients:

$$
\mathrm{CN}^{-}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{CNO}^{-}+\mathrm{MnO}_{2}
$$

Balanced equation:

Question 16

The reaction of potassium metal with water is very exothermic:

$$
\mathrm{K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-390 \mathrm{~kJ} / \mathrm{mol}
$$

A 7.00 g chunk of potassium is dropped into 1.00 kg of water at $25.0^{\circ} \mathrm{C}$. What is the final temperature of the water after the preceeding reaction occurs? Assume that all the heat is used to raise the temperature of the water. ($\left.s_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
\qquad ${ }^{\circ} \mathrm{C}$

Question 17

a) 25.0 mL of 0.200 M NaOH solution, 35.0 mL of 0.050 M KOH solution and 50.0 mL of 0.100 M HCl solution are mixed together. Let's call this mixture solution A . What is the pH of solution A?

$$
\mathrm{pH}=
$$

\qquad
b) 20.0 mL of $0.050 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution $\left(K_{a}=1.8 \times 10^{-5}\right)$ is added to solution A and results in solution B . What is the pH of solution B ?

$$
\mathrm{pH}=
$$

\qquad

18. dæmi

Antimony trifluoride, SbF_{3}, is used in dyeing and as a reactant in organic synthesis. It is possible to oxidise SbF_{3} with F_{2} to yield antimony pentafluoride, SbF_{5}. The reaction is as follows:

$$
\mathrm{SbF}_{3}+\mathrm{F}_{2} \rightarrow \mathrm{SbF}_{5}
$$

If SbF_{5} is mixed with HF , a solution called fluoroantimonic acid will form, which includes among other things the ions $\mathrm{H}_{2} \mathrm{~F}^{+}$and $\mathrm{SbF}_{6}{ }^{-}$. Fluoroantimonic acid is a super acid, which can be more than 10^{15} times stronger than sulfuric acid. Answer the following questions in the appropriate field in the table below.
a) Draw a Lewis structure for $\mathrm{SbF}_{3}, \mathrm{SbF}_{5}$ and $\mathrm{SbF}_{6}{ }^{-}$.
b) Use the VSEPR model to predict the geometry of these molecular structures and draw a 3D representation of them.
c) What is the geometry of the molecular structure called?

Substance	a) Lewis structure	b) 3D representation	c) Name of geometry
SbF_{3}			
SbF_{5}			
SbF_{6}^{-}			

Part III - 10 point questions

Question 19 Mass Percentage

A 6.495 g sample contains $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and NaCl .
In order to determine the mass percentage of $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and NaCl in the sample, the sample was dissolved in water to get 500.0 mL solution. Then, two 50.0 mL aliquotes of this solution were analyzed:

Experiment 1: All the Mg^{2+} ions from one of the aliquotes were precipitated as $\mathrm{MgNH}_{3} \mathrm{PO}_{4}(\mathrm{~s})$, which then was converted to $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}(\mathrm{~s})$. The $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}(\mathrm{~s})$ weighted 0.1769 g .

Experiment 2: All the Cl^{-}ions form the other aliquote were precipitated as AgCl . The AgCl precipitate weighted 0.5923 g .
a) What are the molar masses of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ and AgCl ?

$$
\begin{array}{rl}
M_{\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} & \mathrm{~g} / \mathrm{mol} \\
M_{\mathrm{AgCl}} & =\ldots \mathrm{g} / \mathrm{mol}
\end{array}
$$

b) Experiment 1: What is the number of moles of Mg^{2+} ions in the 50.0 mL solution?

$$
\mathrm{n}_{\mathrm{Mg}^{2+}}=
$$

\qquad mol
c) Experiment 2: What is the number of moles of Cl^{-}in the 50.0 mL solution?

$$
\mathrm{n}_{\mathrm{Cl}^{-}}=
$$

\qquad mol
d) What was the number of moles of $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the sample?

$$
\mathrm{n}_{\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}}=\ldots \mathrm{mol}
$$

e) What was the number of moles of NaCl in the sample?
$\mathrm{n}_{\mathrm{NaCl}}=$ \qquad mol
f) What was the mass percentage of $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the sample?
\qquad \%
g) What was the mass percentage of NaCl in the sample?

Question 19 Density from crystal structure

In this problem, the theoretical density of chrome (Cr) will be determined based on the crystal structure.

Chrome has body-centered cubic (BCC) crystal structe. The figure below shows how a unit cell with corners ABCDEFGH in a BCC crystal structure looks like:

a) How many chrome atoms are there inside one unit cell?

$$
n=
$$

\qquad atom/cell
b) Write an equation for density of chrome as a function of the unit cell length (a), number of atoms inside one unit cell (n), molar mass of chrome (M) and Avagadro's Number (N_{A}). Take note that the unit cell length, a, equals the length $\|A B\|$ in the figure above.

$$
\rho=
$$

\qquad
c) What is the longer diagonal line $\|A G\|$ (red line in the figure) equal to many atom radii (R) ?

$$
\|A G\|=_R
$$

d) Write the longer diagonal line $\|A G\|$ as a function of the unit cell length a.

$$
\|A G\|=
$$

\qquad a
e) Write an equation for the relationship between the unit cell length, a, and the radius of the chrome atom, R.

$$
a=
$$

\qquad
f) What is the density of chrome based on the equation in part-b if it is known that the molar mass of chrome is $M=52.00 \mathrm{~g} / \mathrm{mol}$ and the atomic radius $R=0.125 \mathrm{~nm}$. Answer in the unit $\mathrm{g} / \mathrm{cm}^{3}$.

$$
\rho=
$$

\qquad $\mathrm{g} / \mathrm{cm}^{3}$

21. dæmi Organic Chemistry

Amide is an organic functional group with the chemical formula $-\mathrm{CONR}_{2}$ (see figure below) where R can be organic groups or hydrogen.

Amides are common in nature, especially in proteins. Amides are also common in a variety of plastics, for example nylons. Furthermore amides can be found in many drugs, such as paracetamol and penicillin.

There are many ways to synthesize amides.
One way is to react a carboxylic acid with an amine in the presence of EDCI and DMAP

In these reactions, R stands for organic groups.
This reaction only works for 1° and 2° amine. If 3° amine is used no reaction is observed.
An example of an amide synthesis from a carboxylic acid and amine with the help of EDCI and DMAP can be seen below.

a) Draw the structure of the carboxylic acid \mathbf{A} and the amine \mathbf{B} in the reaction below inside the boxes.

b) Draw the structure of compound \mathbf{C} in the reaction below.

c) Draw a circle around, and name all the functional groups in compound \mathbf{D}.

